IDI’S Experience on health facility malaria case management.

Presentation at the Fresh Air ‘National Malaria Technical Update and coordination Workshop at Hotel Africana, Kampala.

Dr Ssekabira B Umaru: JUMP Team leader

Date: 31st March 2009
Joint Uganda Malaria Training Programme (JUMP)

Collaboration involving:

Uganda Malaria Surveillance Project (UMSP)
Infectious Diseases Institute (IDI),
National Malaria control program of Ministry of Health

Aim of JUMP:

To build capacity of health facilities for management of patients with fever/Malaria through training.
Rationale for the training

• Malaria case management in Africa is characterized by presumptive treatment and substantial overtreatment [McCombie 1996, Ndyomugenyi 2007].
 treatment without laboratory tests [Hammer et al 2007, Zurovac D 2006].
 Prescription of anti-malarials to negative Bs [Reyburn H 2007].

• Treatment inconsistent with policy [Osterholt DM 2006].

• Malaria Rx policy changed in 2005 from first line treatment with inexpensive CQ/SP to ACTs.
Two types of courses

1. Integrated Management of Malaria (IMM)
 - Diagnosis with microscopy
 - For health units with functional labs
 - Delivered at IDI and within districts.

2. Use of Malaria Rapid Diagnostic Tests (RDT) for fever case management
 - Diagnosis with RDTs
 - For Health units without functional labs
 - Includes nursing aides
 - Delivered on site
IMM Course content

General aspects of Malaria (Module 1)
• Malaria transmission and Disease causation
• Epidemiology of Malaria Control and Policy framework for Malaria
• Record keeping
• Medical Supplies management
• Infection prevention Ethical code of conduct

Clinical management of Malaria (Module 2)
• Evaluation of a patient with a fever
• Making a definitive diagnosis of Malaria
• Management of patient with fever and a negative Blood Slide
• Treatment of uncomplicated Malaria
• Treatment of severe malaria
• Treatment of Malaria in Pregnancy
• Management of fever after malaria treatment
• Monitoring for drug safety

• Malaria and HIV/AIDS co-infection
• Patient education

Medical records management Module 4)
• Medical record keeping
• Data storage
• Data retrieval and updating
• Analyzing data
• Interpretation of data
• Presentation of data
• Disposal of data
• Surveillance and data

Laboratory use in Malaria patient management (Module 3)
• Good Laboratory Practice
• Microscopy
• Preparation and storage of different reagents/stains for Malaria microscopy
• Laboratory diagnosis of Malaria
• Quality Assurance/ Quality Control in Malaria microscopy
IMM package

- Baseline assessment on site
- 6 day training of multidisciplinary teams
- Two follow-up support supervision at six and 12 weeks

Method of assessment

1. Individual health worker performance assessment during site visits.
2. Pre and post tests during training.
3. Surveillance data analysis.
Target Audience

<table>
<thead>
<tr>
<th>Clinicians</th>
<th>Laboratory staff</th>
<th>Records staff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical Officers</td>
<td>District Laboratory Coordinator</td>
<td>Records clerks</td>
</tr>
<tr>
<td>Clinical Officers</td>
<td>Lab Technologists</td>
<td>Malaria Focal Persons</td>
</tr>
<tr>
<td>Registered Nurses</td>
<td>Lab Technicians</td>
<td>Surveillance focal person</td>
</tr>
<tr>
<td>Registered Midwives</td>
<td>Lab Assistants</td>
<td>Health Management</td>
</tr>
<tr>
<td>Registered Comprehensive Nurses</td>
<td></td>
<td>Information system (HMIS)</td>
</tr>
<tr>
<td>Enrolled Nurses</td>
<td></td>
<td>focal person</td>
</tr>
<tr>
<td>Enrolled Midwives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enrolled Comprehensive Nurses</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| UMSP | UCSF | ExxonMobil |
Course Organization

<table>
<thead>
<tr>
<th>Day 1</th>
<th>Days 2, 3, 4</th>
<th>Day 5</th>
<th>Day 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Sessions
1,2,3 & 6 of module 1 for Clinical, Laboratory and records Staff together (Lectures & case discussions)
Regional group discussions</td>
<td>Parallel Discipline Specific Sessions
Clinicians Module 2, Laboratory Module 3 Records Module 4 (Lectures and case discussions)
Regional group discussions</td>
<td>Common Session 7 of module 1 for all
Discipline specific clinical placement
Regional action plan development</td>
<td>Common sessions 4 & 5 of module 1 for all
Post test, Regional action plan presentations.
End of course evaluation and closure</td>
</tr>
</tbody>
</table>
Indicators for IMM course

Proportion of clinicians who:-
- Take proper history
- Perform a proper physical examination
- Make a correct diagnosis
- Prescribe correct treatment
- Perform a proper patient education (counseling on adherence, prevention and follow up care)
- Negative smears treated with antimalarials

Proportion of laboratory staff who:-
- Prepare malaria blood smears correctly
- Correctly read positive blood smears
- Correctly read negative blood smears

Records
- Completeness
- Quality of the handwriting
RESULTS
Map of Uganda showing the distribution of Health Facilities where the trainees were drawn and type of course given to each facility:

- Exxon IMM Sites trained at IDI
- PMI IMM Sites trained at IDI
- Exxon Cascade IMM sites
- Exxon RDT sites

Key:
- Exxon IMM Sites trained at IDI
- PMI IMM Sites trained at IDI
- Exxon Cascade IMM sites
- Exxon RDT sites
Graph Shows total trainees to date according to course attended and year of training.

- IMM PMI funded
- Health facility -based RDT Trainees
- RDT TOT
- Cascade
- IMM TOT
- IMM

Over all total trainees: 803

- 2006: 51 (IMM), 210 (RDT TOT), 11 (Cascade), 51 (IMM PMI funded)
- 2007: 221 (IMM TOT)
- 2008: 531 (OVER ALL), 225 (IMM TOT), 49 (Cascade), 98 (RDT TOT), 8 (IMM PMI funded), 52 (IMM)
Key indicators for children under 5 years

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>Pre</th>
<th>Post</th>
<th>Mean Difference</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscopy among suspected malaria</td>
<td>38.5%</td>
<td>60%</td>
<td>16.1%</td>
<td><0.04</td>
</tr>
<tr>
<td>BS- with Malaria Tx</td>
<td>47.9%</td>
<td>19.6%</td>
<td>-28.3%</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Sample Size | 8 | 8
Key indicators for patients 5 or more years

<table>
<thead>
<tr>
<th></th>
<th>Pre</th>
<th>Post</th>
<th>Mean Difference</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscopy among suspected malaria</td>
<td>34.1%</td>
<td>53.4%</td>
<td>22%</td>
<td>0.02</td>
</tr>
<tr>
<td>BS- with Malaria Tx</td>
<td>38.8%</td>
<td>15.6%</td>
<td>-23.2%</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Sample Size (no Hus) 8 8
<table>
<thead>
<tr>
<th>Indicator</th>
<th>Baseline</th>
<th>1<sup>st</sup> F/Up (6weeks)</th>
<th>2<sup>nd</sup> F/Up (6weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory (n=Number evaluated)</td>
<td>17</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>% of BS prepared correctly</td>
<td>22%</td>
<td>67%</td>
<td>63%</td>
</tr>
<tr>
<td>% of BS read correctly</td>
<td>49%</td>
<td>71%</td>
<td>70%</td>
</tr>
<tr>
<td>% of positive BS read correctly</td>
<td>49%</td>
<td>71%</td>
<td>70%</td>
</tr>
<tr>
<td>% of negative BS read correctly</td>
<td>72%</td>
<td>77%</td>
<td>91%</td>
</tr>
</tbody>
</table>
The effect of the IMM training on performance of trained health care workers

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Baseline percentage that performed task correctly</th>
<th>1st and 2nd follow-up percentage correct</th>
<th>Relative Risk (unadjusted) 1st & 2nd f/up /Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Size - visits observed</td>
<td>101</td>
<td>148</td>
<td>2.53</td>
</tr>
<tr>
<td>Proper history taking</td>
<td>20</td>
<td>50</td>
<td>2.53</td>
</tr>
<tr>
<td>Thorough physical exam</td>
<td>18</td>
<td>68</td>
<td>3.83</td>
</tr>
<tr>
<td>Correct diagnosis</td>
<td>47</td>
<td>96</td>
<td>2.05</td>
</tr>
<tr>
<td>Correct treatment</td>
<td>42</td>
<td>89</td>
<td>2.14</td>
</tr>
</tbody>
</table>
Performance of health care workers in the cascade trained sites (Bugembe and Buwenge HC IVs).

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>1st Follow up</th>
<th>2nd follow up</th>
<th>Mentoring visit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical (Number assessed)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion of health workers that take proper history (%)</td>
<td>9.0</td>
<td>16.0</td>
<td>59.1</td>
<td>23.5</td>
</tr>
<tr>
<td>Proportion of health workers that do a thorough physical examination of patients (%)</td>
<td>0.0</td>
<td>20.0</td>
<td>27.3</td>
<td>5.9</td>
</tr>
<tr>
<td>Proportion of health workers that make a correct diagnosis (%)</td>
<td>35.2</td>
<td>68.0</td>
<td>54.5</td>
<td>64.7</td>
</tr>
<tr>
<td>Proportion of health workers that prescribe the correct treatment (%)</td>
<td>40.9</td>
<td>68.0</td>
<td>59.1</td>
<td>88.2</td>
</tr>
<tr>
<td>Proportion of health workers that give adequate and relevant patient education (%)</td>
<td>0.0</td>
<td>8.0</td>
<td>22.7</td>
<td>29.4</td>
</tr>
<tr>
<td>Laboratory (Number assessed)</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Mean proportion of smears prepared correctly. (%)</td>
<td>0</td>
<td>80.0</td>
<td>66.7</td>
<td>100.</td>
</tr>
<tr>
<td>Staff mean sensitivity (%)</td>
<td>27.5</td>
<td>71.3</td>
<td>64.3</td>
<td>96.7</td>
</tr>
<tr>
<td>Staff mean specificity</td>
<td>63.0</td>
<td>92.0</td>
<td>75.7</td>
<td>85.0</td>
</tr>
</tbody>
</table>
Site assessment data for clinical staff

- Physical exam performed correctly
- Diagnosis supported by history, physical exam and lab tests
- Treatment consistent with national policy for malaria tx

Baseline n=12 | 1st Follow up n=81 | 2nd Follow up n=67
Site assessment data for laboratory staff

- Thick smear slides prepared correctly
- BS+ read correctly
- BS- read correctly

Baseline n=17, 1st followup n=16, 2nd Followup n=14
RDT course

• Done in 2 districts, trained all HCII and HCIII without functional laboratories

• 6 other HCII during the training of national trainers

• 225 health workers were trained in total

• Data is still under analysis but from general observations patients in trained health units are treated according to results unlike earlier when every fever was treated as malaria.
Schedule for RDT

<table>
<thead>
<tr>
<th>Day 1</th>
<th>Day 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation of patient with fever</td>
<td>Patient education</td>
</tr>
<tr>
<td>Performing and Interpretation of RDT results</td>
<td>Practical</td>
</tr>
<tr>
<td>Treatment of uncomplicated malaria</td>
<td>Logistics Management & Storage and monitoring</td>
</tr>
<tr>
<td>Management of a patient with fever but a negative RDT</td>
<td></td>
</tr>
<tr>
<td>Referral of patients with severe disease</td>
<td></td>
</tr>
</tbody>
</table>
Effect of the training on quality of care in health facilities.

- Training teams helps to cause unity in service delivery.
 - Clear evidence of team work
 - Improved utilization of the labs for confirmation of Malaria cases.
- Improvement of the quality of care
 - Improved diagnostic skills by clinicians
 - Improved laboratory diagnosis
 - More rational use of malaria treatment with significant reduction in treating negative smears
- Improved completeness and cleanliness of the records
- The improvements observed increase with continued follow-up.
Challenges

- Health system issues affect health worker performance:
 - Personnel issues at sentinel sites
 - Inadequate staffing especially in the laboratory
 - Low motivation
 - Transfers disorganize the built teams.
 - Lack of reliable source of power for microscopy
 - Shortage of drugs and medical supplies/equipment
- Inadequate funding
Lesson learnt

• Training of teams rather than individuals causes unity in service delivery

• Fever case management is better after training and further improvement observed with continued support supervision.

• Laboratory trainees need more hands-on experience to perform better.

• There are health system issues that limit further improvement.

• The cascade mode of delivery of the IMM training is cheaper and effective in improving health care worker practices and allows for easy scalability.

• On site training helps to reach wider coverage in a shorter period of time.
Achievements

- JUMP RDT curriculum has been adopted by MOH for national roll out
- IMM curriculum has been approved by national Case Management working Group
- The laboratory module has been adopted by STOP MALARIA for training laboratory staff.
- UMSP using it for the PMI supported trainings
Conclusion

Integrated team-based training with support supervision improved key indicators of malaria case management and reduced the number of unnecessary antimalarial treatments.
Acknowledgments

• Partners: UMSP; IDI, Ministry of Health, PMI (CDC & USAID), Malaria Consortium, WHO

• AMREF, Malaria Consortium for management support

• University of Washington/ I-TECH for M&E support

• ExxonMobil & PMI for the funding